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ABSTRACT: Fractional derivative is a field of mathematical analysis which deals with derivatives of arbitrary order. 

Riemann-Liouville and Caputo introduced different formulas for computing the fractional derivatives. Indeed, Caputo 

derivative does not coincide with the Riemann-Liouville derivative. This paper investigates Caputo and Riemann-Liouville 

derivatives of fractional order. Relevant information and known properties on Caputo and Riemann-Liouville derivatives of 

fractional order were considered to establish the results of this study. These results are proved by direct method. This paper 

provides some results about the Caputo and Riemann-Liouville derivatives of fractional orders. It also examines the Caputo 

and Riemann-Liouville derivatives of some series. Moreover, it provides necessary and sufficient conditions so that the 

Caputo and Riemann-Liouville derivatives of fractional order coincide. 
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1. INTRODUCTION 

Fractional calculus is the study of generalized orders of 

differentiation and integration (together referred to as differ-

integration) beyond integer orders to real numbers, and 

complex numbers. It has its origin way back 1695 when 

L'Hospital raised question whether the meaning of derivative 

of order   would still be valid when   is not an integer. The 

advantage of using fractional derivative versus the integer 

derivative is that the integer derivative is local in nature, 

where as the fractional derivative is global in nature. 

Riemann-Liouville formulated the formula for computing the 

fractional derivatives. However, in 1967, Caputo introduced 

another way for computing the fractional derivatives. Indeed, 

Caputo derivative does not coincide with the classical 

derivative while Riemann-Liouville derivative is in-line with 

the classical derivative. With this, the existence of the 

derivative of a function in Caputo sense is fewer than those 

in Riemann-Liouville sense. In this paper, the researchers are 

motivated to examine functions in which Caputo and 

Riemann-Liouville derivatives of fractional order coincide. 

One of the applications of fractional calculus is the fractional 

order proportional-integral-derivative controller (PID 

controller) which is an automatic controller widely used in 

the industrial control systems nowadays. PID controller 

gives a more effective way to enhance the control 

performance of the system. Moreover, in concrete terms, it 

automatically applies accurate and responsive correction to a 

control function. For instance, the cruise control on a car, 

where external influences such as hills (gradients) would 

decrease speed. The PID algorithm restores from current 

speed to the desired speed in an optimal way, without delay 

or overshoot, by controlling the power output of the vehicle's 

engine. 

 

2. MATERIAL AND METHODS 

This study is theoretical research and hence the results are 

the proofs and theorems generated. Relevant information and 

known properties on Caputo and Riemann-Liouville 

derivatives of fractional order are considered from published 

materials such as books, journals and online sources. 

Furthermore, preliminary concepts are presented, which are 

useful to prove the results of this study.  

 

3. PRELIMINARIES 

In this section, basic definitions of Caputo and Riemann-

Liouville of fractional derivatives and fractional integrals are 

presented. Additionally, some known properties are also 

discussed, as they play an important role in proving the 

subsequent results. Furthermore, examples are provided to 

illustrate the concepts of Riemann-Liouville and Caputo 

derivatives of fractional order. 

 

Definition 3.1. The fractional integral (or the Riemann-

Liouville integral)     with fractional order      of 

function   is defined as  
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In this context, the integration runs from   to  . 

 

Definition 3.2. The Riemann-Liouville derivative of 

fractional order   of function   is given by  

   
  ( )  

  

   
  (   ) ( ) 

                                   
 

 (   )

  

   ∫ (   )      ( )  
 

 
 

where        , where     . 

 

Example 3.3. Consider a function       defined by 
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Definition 3.4. The Caputo derivative of fractional order   

of function   is defined as  
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Example 3.5. Consider a function       defined by 

 ( )     for all    . Let    . Then the Caputo 

derivative of fractional order 
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Caputo derivative does not coincide with the classical 

derivative (Li & Deng, 2007), say, for   (     )   
  , 

   
  (   ) 
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and 
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where  ( )( )  
  

    ( ), while RL derivative is in-line 

with the classical derivative, say, for                             
(     )     , 
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and  

     ( )    
  ( )   ( )( ). 

 

With this, the existence of the derivative of a function in 

Caputo sense is fewer than those in RL sense.  

 

The following properties of Caputo and RL derivatives are 

taken from (Li & Deng, 2007; Li, et al., 2009; Li, et al., 

2011; Podlubny, 1999).  

1. If    , then for any positive integer  ,  
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generally,  
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constant. 
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trivial case             is simple and removed here), 
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Note that if        , then 
       

 (       )
 ( ) in Property 6 

becomes zero since  ( )   . 

 

4. RESULTS AND DISCUSSION 

In this study, the investigation of Caputo and Riemann-

Liouville derivatives has yielded valuable insights into the 

behavior of certain mathematical series. Moreover, the 

necessary and sufficient conditions governing the 

convergence of Caputo and Riemann-Liouville derivate are 

examined. The following presents the results of this study. 

 

Theorem 4.1.  If  ( )      where     and     , then 
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Theorem 4.2. If  ( )  ∑    
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Proof: The proof is similar to Theorem 4.1.                      

 

Theorem 4.3. If   is a function defined by                  ( )  
∑    

  
    where     and        , then   
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Proof: By Theorem 4.2,  ∑ (
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Theorem 4.4. Let   be a differentiable function and has 

bounded derivative. Then   is continuously differentiable on 
[    ] and    

 ( )    for    (   ), if and only if                 
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Now, since every differentiable function that has bounded 

derivative is uniformly continuous and every uniformly 

continuous function is continuous, it follows that   is 

continuously differentiable function on [    ].   

The following definition will be used in the next result. 

 

Definition 4.5. If   is a field, then we can define the field of 

Puiseux series with coefficients in   informally as the set of 

expressions of the form 
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where   is a positive integer and    is an arbitrary integer. 

 

Theorem 4.6. If   is a Puiseux series defined by      ( )  
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Therefore, for ⌈
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5. CONCLUSION 

In general, the Caputo and Riemann-Liouville derivatives do 

not coincide. Hence this paper showed some conditions so 

that the Caputo and Riemann-Liouville derivatives coincide. 

Moreover, for any differentiable function with bounded 

derivative, the two derivatives are equal if and only if the 

function is continuously differentiable on a closed interval 

and the Riemann-Liouville derivative of 1 of fractional order 

  (   ) is 0. The results of this study are all theories, 

hence an investigation of concrete application of these 

results is recommended. 
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